SOLAPUR UNIVERSITY, SOLAPUR

FACULTY OF ENGINEERING & TECHNOLOGY

Electronics & Telecommunication Engineering

PROGRAM EDUCATIONAL OBJECTIVES AND PROGRAM OUTCOMES FOR

Electronics & Telecommunication Engineering Program

STRUCTURE OF S.E (Electronics & Telecommunication Engineering) W.E.F 2013-14

STRUCTURE OF T.E (Electronics & Telecommunication Engineering) W.E.F 2014-15

STRUCTURE OF B.E (Electronics & Telecommunication Engineering) W.E.F 2015-16
S. E. (Electronics & Telecommunication Engineering) Semester- I

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>Tut</td>
</tr>
<tr>
<td>01</td>
<td>Engineering Mathematics-III</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>Electronics Circuit Analysis and Design-I</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>03</td>
<td>Circuits and Network</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>04</td>
<td>Digital Techniques</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>05</td>
<td>Data Structures</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>06</td>
<td>Electronic Workshop Lab</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
<td>2</td>
</tr>
</tbody>
</table>

| 07 | Environmental Science-I | 1 | -- | -- | 1 | -- | -- | -- | -- | -- |

S. E. (Electronics & Telecommunication Engineering) Semester- II

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Subject</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>Tut</td>
</tr>
<tr>
<td>01</td>
<td>Electronics Circuit Analysis and Design-II</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>02</td>
<td>Analog Communication</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>03</td>
<td>Control Systems</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>04</td>
<td>Linear Integrated Circuits</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>05</td>
<td>Signals and Systems</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>06</td>
<td>Electronic Software Lab-I</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>18</td>
<td>2</td>
</tr>
</tbody>
</table>

| 07 | Environmental Science | 1 | -- | -- | 1 | -- | -- | -- | -- | -- |

Note:

- * Practical and Oral Examination of Electronic Circuit Analysis & Design-I is combined with Circuits And Networks
- # Practical and Oral Examination for Electronic Circuit Analysis & Design – II and Electronic Software Lab-I is combined
- Term work assessment shall be a continuous process based on student’s performance in class tests, assignments, homework, subject seminars, quizzes, and laboratory books and their interaction and attendance for theory and lab sessions as applicable.
• Vocational Training (be evaluated at B.E. Part-I) of minimum 15 days shall be completed in any vacation after S.E. Part-II but before commencement of B.E. Part-I & the report should be submitted in B.E. Part-I.

• The batch size for the practical’s/tutorials be of 20 students. On forming the batches, if the strength of remaining students exceeds 9 students, then a new batch be formed.
Teaching Scheme:
Theory: 3 Hrs./ week
Tutorial : 1 Hr/ week
Examination Scheme:
Theory: 100 marks
Term work: 25 Marks

Course Objectives
1. To introduce higher order linear differential equations related to electronics and electrical circuit problems
2. To introduce Laplace and inverse Laplace transforms and analyze electrical circuits using it
3. To introduce Fourier series and integral transform.
4. To introduce Z transform and its properties
5. To introduce vector calculus

Course Outcomes
At the end of this course, the student will be able to-
1. Solve the higher order linear differential equation related to electrical circuit theory
2. Apply Laplace and inverse Laplace transforms for analysis of simple electrical circuits
3. Express the function in terms of sines and cosines components so as to model simple periodic functions.
4. Exhibits knowledge of Z transform and its properties
5. Use different vector differential operators

SECTION – I

Unit 1: Linear Differential equations with constant coefficients – Basic definition, differential operator, complimentary functions, particular integral shortcut method for standard functions like $e^{ax}, \sin(ax + b), \cos(ax + b), x^m, e^{ax}V$ and xV, particular integral general method (without method of variation of parameters) for other functions, electrical engineering Applications [6 Hrs.]

Unit 2: First Order Partial Differential equations– Non-linear partial differential equations of type I $f(p,q) = 0$, type II $f(p,q,z) = 0$, type III $f_1(p,x) = f_2(q,y)$, Linear Partial Differential equations by Lagranges method. [5 Hrs.]

Unit 3: Laplace Transform: Definition, Laplace Transform of standard functions, Properties-First shifting, change of scalar, multiplication of power t and division by t, Laplace Transform of derivative and integral, Laplace transform of Periodic functions, Unit step functions and unit Impulse functions. [5 Hrs.]
Unit 4: Inverse Laplace Transform: Methods of finding Inverse Laplace transforms, Convolution Theorem, Applications to solve linear differential equations related to electrical circuits with constant coefficients. [5 Hrs.]

SECTION-II

Unit 5: Fourier series: Definition, Euler’s formula, Expansions of function, Change of interval, even and odd functions, half range Fourier series. [6 Hrs.]

Unit 6: Fourier Transform: Fourier integral, Fourier sine and cosine integral, Complex form of Fourier integral. Fourier Transform, Fourier sine and cosine transform and Inverse transform. [5 Hrs.]

Unit 7: Z-Transform: Z-Transform of elementary Functions, Properties of Z-Transform and Inverse Z-Transform. [5 Hrs.]

Unit 8: Vector Calculus: Differentiation of vectors, vector differential operator, Gradient, Divergence and Curl of vector field, Solenoid, irrotational and conservative vector field. [5 Hrs.]

Text books:

Reference Books:

Term Work:
The term work shall include minimum eight Assignments covering all units.
2. ELECTRONIC CIRCUIT ANALYSIS & DESIGN - I

Course Objectives

1) To prepare good fundamentals and practical knowledge about PN Junction Diode and its various applications.
2) To give good fundamental concept about BJT, FET and application of BJT – Switch & Amplifier.
3) To prepare students to design, simulate, develop and test for unregulated power supply and transistor amplifier, relay driver circuits.

Course Outcome

1) Student can demonstrate an ability to design various electronic circuits using diode and BJT.
2) Student understands Electronic System Design.
3) Student can participate and succeed in competitive examinations.

SECTION I

Unit 1: PN Junction Diode: [8 Hrs.]
Diode characteristics (using Diode Equation), Effect of Temperature, AC & DC Load Line, Junction Capacitance, Ratings of Diode.

PN Junction as Rectifier: HWR, FWR, Bridge Rectifier (detailed analysis includes various parameters- Io (rms), Vo (rms), Io (avg), Vo (avg), Ripple Factor, Efficiency, TUF, PIV)

Unit 2: Diode Applications: [7 Hrs.]

Unit 3: Filter: [3 Hrs.]
Capacitance, Inductance, LC & π Filter (Analysis includes derivation for Ripple Factor & their comparison)
Unit 4: Design of Unregulated Power Supply: [6 Hrs.]
Design of unregulated power supply using Rectifier & Filter (design includes selection of Transformer, Diode & Respected Filter Component)

SECTION II

Unit 5: Bipolar Junction Transistor: [9 Hrs.]
I/O Characteristics, Current Components, Early Effect, AC&DC Load Line, Ratings of Transistors.
Biasing of Transistors: Tharmal Runaway, Biasing – Fixed, Collector to base & Self biasing, Compensation techniques.

Unit 6: Transistor Amplifier Frequency Response: [3 Hrs.]
Effect of Cc & Ce on Low frequency Response, Effect of Junction Capacitance at High Frequency.

Unit 7: Design of Driver Circuit using Transistors: [4 Hrs.]
Design of Single Stage Amplifier using BJT (CE, CE with Re & Ce)

Unit 8: Field Effect Transistor: [8 Hrs.]
JFET, V-I characteristics, different configurations of JFET, parameters of JFET, Common source biasing and application as an amplifier. JFET as VVR, application of VVR. MOSFET – Types, V-I Characteristics, application as a switch.

Note: For selection of components in design Data Sheet should be referred.

Text Books:
1. Electronic Devices and Circuits Allen Mottershed PHI Publication
2. Electronic Devices and Circuits- J.B.Gupta 3rd Edition KATSON Books
3. Electronics Devices and Circuits- S. Shalivahanan, N SureshKumar, Tata McGraw Hill Publication

Reference Books:
1. Electronic Devices Floyd Pearson Education
2. Electronic Devices & Circuit Theory Boylestad Pearson Education
3. Electronic Design Martin Roden Shroff Publication from Concept to Reality
Term work:

List of Practicals (Minimum eight practicals from 1 to 12 and Minimum six practicals from 13 to 22)

List of Practical for Electronic Circuit Analysis & Design – I

1. Full Wave Rectifier circuit design and analysis.
2. Performance, parameters of filter circuit.
3. Clipper, clamper Circuits.
4. Voltage multiplier using diode.
5. V-I Characteristics of zener diode & its application as regulator.
7. I/O Characteristics of CB configuration.
8. I/O Characteristics of CE configuration.
10. Design and implementation of relay driver circuit.
11. V-I characteristics of JFET.
12. Application of MOSFET as a switch.

List of Practical for Circuits and Networks

13. Verification of superposition theorem.
15. Frequency response of series resonance circuit.
17. Z and Y parameters.
19. Design LPF, plot frequency response & find cut off frequency.
20. Design constant (HPF) high pass filter, plot frequency response & find cut off frequency.
21. Design of attenuators (L-type and T-type.)
22. Design of attenuator (π-type.)

Note: Practical and Oral Examination of Electronic Circuit Analysis & Design – I is combined with Circuits and Networks
3. CIRCUITS AND NETWORKS

Course Objectives

1) To develop skills for analysis of linear circuits with dependent and independent AC/DC excitations.
2) To understand concept of resonance in electric circuits and its applications.
3) To understand evaluation and analysis of transient and steady state response of Linear circuits.
4) To understand fundamental knowledge about passive filters, Attenuators and its design.

Course Outcomes

1) Students can analyze Linear Circuit by understanding different Network theorems and analysis methods.
2) Student can evaluate transient and steady state response of Linear circuits.
3) Student can design passive filter and attenuator Circuits.

SECTION I

Unit 1: Circuit Analysis and Network Theorems [10 Hrs.]

Network Theorems: Superposition, Thevenin’s, Norton’s and Maximum Power Transfer Theorems.

Unit 2: Resonance: [6Hrs.]

Parallel resonant circuit(Tank circuit), resonant frequency, variation of impedance with frequency, reactance curves, numerical problems based on above.
Unit 3: Two Port Networks [8 Hrs.]
Relation between two port variables, open circuit impedance parameters(Z), short circuit admittance parameters(Y), Transmission parameters(ABCD), Hybrid parameters(h), reciprocity and symmetry conditions. Relationship between parameter sets. Parallel, series and Cascade connection of two-port networks, T and π representation, terminated 2 port network. Analysis of common two ports.

SECTION II

Unit 4: Transient Response [9 Hrs.]
Review of Laplace Transform Basics: Initial conditions, evaluation and analysis of transient and steady state response of following:

Unit 5: Network Function [6 Hrs.]
Concept of complex frequency, network function for one port and two port network. Poles and zeros of network function. Restriction on poles and zero location of driving point function and transfer function. Time domain behavior from poles and zero plot.

Unit 6: Filters and Attenuators [9 Hrs.]
Filters: Characteristic of high pass, low pass and band pass and band stop filter. Constant K type filters, m-derived filter, section m derived LPF, HPF, BPF and BSF.
Attenuator’s: Neper & Decibels, L, T and π type, Lattice attenuators.

Text Books:
 TMH publication. 3rd Edition
2. A Course in Electrical Circuit Analysis Sony Gupta Dhanpatroy Son’s publication.

Reference Books:
1. Network Analysis M.E. Van Valkenburg, PHI publication. 3rd Edition
2. Theory and problems of Electric Circuits Joseph A Edminster, Schaum Series

Term work:
List of Practicals (Minimum Six practicals)

Note:
- The list of Practicals for Circuits and Network is mentioned in Electronics Circuit Analysis and Design – I syllabus
- *Practicals and Oral Examination of Electronic Circuit Analysis & Design – I is combined with Circuits And Networks
Teaching Scheme:
Theory: 4 Hrs/Week
Practical : 2 Hr/Week

Examination Scheme:
Theory: 100 Marks
Term-Work: 25 Marks
Practicals/Oral Exam: 50 Marks

Course Objectives

1) To understand principles, characteristics and operations of combinational & sequential logic circuits.
2) To design combinational circuits by using logic gates, MSI circuits, PLDs.
3) To design, implement and analyze, asynchronous and synchronous sequential circuits using flip flops.

Course Outcome

1) Students will be able to design & realize combinational logic circuits using logic gates, MSI circuits, PLDs for various practical applications.
2) Students will be able to design, implement and analyze, asynchronous and synchronous Sequential circuits using flip flops.
3) Students will be able to implement the fundamentals in Industrial Applications.

SECTION I

Unit 1: Codes and Simplification technique [5 Hrs.]
Codes- BCD, Gray, Seven segment. Principles of combinational logic: Standard representation for Logical Function, canonical forms, don’t care conditions, minimization techniques (using K-map upto 4 variables only), static and dynamic Hazards.

Unit 2: Combinational Circuit Design [9 Hrs.]
Adder, Subtractor, code converters (binary to gray & gray to binary, BCD to 7 segment), IC 7447, 7448. MUX, DEMUX, encoder, priority encoder, decoder Multiplexer (Tree) and Demultiplexer (Tree), magnitude comparator, adder with look ahead carry generator, ALU (74181), Parallel adder (IC 7483), subtractor using adder.

Unit 3: Logic Families [4 Hrs.]
Characteristics of Digital ICs, Typical values for TTL, CMOS & ECL. Input/output profile for TTL & CMOS. TTL logic families-standard TTL, Totem-pole, open collector, tri-state (concept & application). Significance of TTL sub families (L, H, LS, S). MOS family- PMOS, NMOS, CMOS (inverter, NAND & NOR), importance of (C, HC). CMOS-TTL interfacing, comparison of TTL & CMOS.
Unit 4: Flip-Flops [6 Hrs.]

SECTION II

Unit 5: Registers [7 Hrs.]
Asynchronous and synchronous sequential circuits, Shift register (modes of operation), 4 bit bi-directional shift register using D / J-K, universal shift registers, application of shift registers- (ring counter, Sequence generator, Johnson's counter, IC 7495/74195).

Unit 6: Counters [7 Hrs.]
Design of ripple counter using flip-flop (IC 7490,7493), 4 bit up/down counter (positive / negative edge triggered), mod –N counter, Design of Synchronous counter using Flip-Flop, 4 bit up/down counter, IC 74191.

Unit 7: Synchronous Sequence Machines [6 Hrs.]
Moore/Mealy machines, representation techniques, state diagram, state assignment, state reduction, implementation using flip flops. Application like sequence generator & detection.

Unit 8: Memory and PLD’s [4 Hrs.]
RAM, ROM, PLDs- PROM, PAL, PLA Architecture, Implementing combinational circuits using PLDs.

Text Books:
5. Digital System, Principles and Applications, Ronald J. Tocci, PHI

Reference Books:
1. Digital Design Principles and Application - Walkerly – Pearson Education
2. Digital Electronics - Gothman - (PHI)
3. Digital Logic and Computer Design - Morris Mano - Pearson Education

Term work:

List of Practicals (Minimum Twelve Practicals)

1. Implementation of SOP and POS logical functions using universal gates.
2. Implementation of full adder, and full subtractor using logic gates.
3. Code conversion using logic gates or logic ICs: BCD to Binary, Binary to Gray, Gray to Binary.
5. Design & implementation of 1 decimal digit BCD adder using IC 7483.
6. (i) Verification of functionality of multiplexer.
 (ii) Design and implement combinational logic function using multiplexer ICs.
7. (i) Verification of functionality of decoder.
 (ii) Design and implement combinational logic function using decoder IC.
8. Verification of the functionality of BCD to Seven segment decoder/driver.
10. Functional verification of universal shift registers using IC 7495.
11. Design and implementation of Ring counter using shift register.
12. Design and implementation of Johnson counter using shift register.
13. Design and implementation of Pulse train generator using IC 7495.
14. Functional verification of ripple counter using IC 7490
15. Functional verification of synchronous counter using IC 74191
Teaching Scheme:
Theory: 3 Hrs./Week
Practical: 2 Hrs./Week

Examination Scheme:
Theory: 100 Marks
Term-Work: 25 Marks
Practical/Oral Exam: 50 Marks

Course Objectives
1. To provide an in-depth knowledge in problem solving techniques and data structures.
2. To understand the different methods of organizing data.
3. To implement the different data structures.

Course Outcome
1. Student will be able to demonstrate the concepts of Stacks, Queues, Linked List, Trees
2. Student will be able to give difference between linear & non-linear data structures.
3. Student will be able to manage the data efficiently.
4. Student will be able to function on multidisciplinary industry as a professional.

SECTION I
Unit 1: Stacks, Queues: [8Hrs.]
Stack-Definition, representation, operations, implementation and its applications (converting infix to postfix expression using algorithm, evaluating postfix expression using algorithm)
Queue- Definition, representation, operations, implementation of simple Queue & Circular Queue and its applications, Definition & concept of DEQUE & Priority Queue.

Unit 2: Linked List: [8 Hrs.]
Definition, Representation, operations, & applications of singly linked list (Polynomial representation using Algorithm), Doubly linked list, Circular linked list, Concept of Avail list.

Unit 3: Recursion: [4 Hrs.]
Definition, recursive flow chart, programs using recursive functions (factorial, GCD, Multiplication of two numbers, Fibonacci sequence)

SECTION II
Unit 4: Non-Linear Data structures: [8 Hrs.]
Trees- Basic Terminology, Binary tree, Traversal methods & program implementing tree Traversal methods, Binary Search Tree- Definition, Representation, Inserting & Deleting Algorithm.
Graphs- Basic concepts of graph theory, storage representation, Traversal Methods.
Unit 5: Searching Techniques: [4 Hrs.]
Linear Search, Binary Search, Definition of hashing, Hash Functions, Hash Collision, Collision Resolving Techniques - open Addressing & closed Addressing.

Unit 6: Sorting Techniques: [8 Hrs.]
Bubble Sort, Insertion Sort, Selection Sort, concept of Merge Sort, Quick Sort, Radix sort, Analysis of sorting techniques based on time complexity

Text Books:
2. Data structures using C, Rajani Jindal Umesh Publication
4. Data Structures using C, ISRD Group, TMH

Reference Books:
1. Fundamentals of Data Structures, Ellis Horowitz, Sartaj Sahani (Galgotic Book Source)
2. Data Structures and Program design, Robert L. Kruse (PHI).

Term work:
List of Practicals (Minimum Twelve Practicals)
1. Implementation of stack using array.
2. Implementation of Queue using array.
3. Implementation of circular Queue using array.
4. Implementation of stack using Linked list.
5. Implementation of Queue using Linked list.
7. Implementation of singly Linked list.
9. Find Factorial of a given no, by defining recursive function.
10. Find GCD of given no, by defining recursive function.
11. Find multiplication of n Natural no by defining recursive function.
12. Implementation of Tree Traversal Methods.
14. Write the program to Sort the given list using Bubble sort method
15. Write the program to Sort the given list using Selection sort method
16. Write a program to Sort the given list using Insertion sort method
Teaching Scheme:
Tutorial: 1Hr./Week
Practical: 2Hrs./Week

Examination Scheme:
Term Work: 50 Marks

Course Objectives
1) To understand working principle of audio system.
2) To make students familiar with measuring instruments like CRO, DSO, Signal Generator.
3) To understand PCB Designing process.

Course Outcomes
1) Students are able to demonstrate knowledge about audio system.
2) Students are able to use CRO, DSO and Signal Generator.
3) Students are able to design PCB using PCB designing software.

Unit 1: Study of Audio System:
Microphone, Loudspeaker, Public Address System.

Unit 2: Electronic Measuring Instruments:
CRO, Signal Generator, Multimeter, Spectrum Analyzer, Digital Storage Oscilloscope.

Unit 3: Measurement of parameters:
Distance, weight, speed, temperature using various transducers, pressure and various gas sensors (such as MQ2, MQ6, MQ7…etc).

Unit 4: Printed Circuit Boards (PCB):
Types, Layout procedure, artwork, Fabrication (In this, fabrications of small circuit using discrete component on single side PCB is expected).

Text Books:
2. Electronic Instruments and Instrumentation Technology
 MMS.Anand Prentice Hall of India Pvt. Ltd.
3. A course in Electrical and Electronics Measurements and Instrumentation - A.K. Sawhney -
 Dhanpat Rai & Co.
5. Instrumentation and Control System – Katta Narayan Reddy, Palakodeti Sri Rama Krishnadu
Scitech Pulication

Reference Books

1. Electrical and Electronic Measurements – Banerjee, PHI
2. Introduction to Measurements and Instrumentation, 4th edition - Ghosh PHI
3. Electronic Instrumentation and Measurement Techniques, W.D. Copper, PHI

Web Resources: Refer online datasheets

Term work:

Tutorials: Minimum 2 assignments per Unit.

List of Practicals (Total seven Practicals include minimum six Practicals from 1 to 8 and 9th practical)

1. Public Address System.
2. Introduction to Measuring Instruments.
3. Analog and Digital Circuits building and testing on Breadboard.
5. Measurement and testing of different types of Electronic components (Resistors, capacitors, inductors, diodes, transistors, ICs)
6. Measurement of displacement using LVDT.
7. Measurement of temperature by using any electronic transducer like Thermocouple, Thermistor or RTD.
8. Speed measurement using any electronics transducer like magnetic pick up & photo electric pick up.
9. Small circuit building using discrete components on single sided PCB.
 a) PCB layout and artwork using any PCB designing software.
 b) PCB Designing process.
 c) Component mounting, soldering and testing of PCB.
Course Objectives
1) To prepare fundamental knowledge for Negative and Positive feedback amplifier and its design.
2) To enable students to analyze and Design Electronic Circuits for Power amplifier, Oscillator and Multivibrator using transistor.
3) To make students to design regulated power supply using regulator ICs.

Course Outcome
1) Student can apply concept of Negative feedback and positive feedback for amplifier design.
2) Student can design regulated power supply and waveform generation circuits using IC555
3) Student can participate and succeed in competitive examinations

SECTION I

Unit 1 : Multistage Transistor Amplifiers [5 Hrs.]
Need of cascading, different coupling schemes, Frequency response for Multistage amplifier, Frequency response, Analysis using h parameters. (Av, Ai, Rf, Ro, Avs, Ais), RC coupled amplifier, Transformer coupled amplifier, Direct coupled amplifier

Unit 2 : Feed Back Amplifier [6 Hrs.]

Unit 3 : Sinusoidal Oscillators [7 Hrs.]
Barkhausen criteria.
Types of oscillators - RC oscillators- phase shift, Wein bridge oscillator.
LC oscillators– Hartley Colppits & Crystal oscillator (analysis of all), Design of RC oscillator.

Unit 4: Power amplifiers
[6 Hrs.]
Classification, class A, B, C & AB (Analysis of A, B, & AB), Calculations of power gain, efficiency, power dissipation. Cross over distortion, Harmonic distortion, Complementary symmetry power amplifier, Design of complementary system Power Amplifier.

SECTION II

Unit 5: Transistorized Voltage Regulators:
[4 Hrs.]
Design of Series Pass, Series Pass with Pre Regulator, short circuit protection, thermal shut down, line regulation, load regulation & ripple rejection ratio

Unit 6: IC Regulator
[7 Hrs.]
Fixed volt regulator using IC 78XX & 79XX series, variable volt regulator using IC LM 317 & LM 337. Dual regulated power supply, features of IC voltage regulator, Current boosting in voltage regulator. Design of voltage regulators using above IC.

Unit 7: Multivibrators using Transistors:
[6 Hrs.]
Monostable, Bistable, Astable, Schmitt Trigger (analysis of astable and monostable), design of triggering circuits.

Unit 8: Waveform generator using IC 555
[7 Hrs.]

Text Books:

1. Electronic Devices and Circuits Allen Mottershed PHI Publication
2. Electronic Devices and Circuits- J.B.Gupta 3rd Edition KATSON Books
3. Electronics Devices and Circuits- S. Shalivahanan,N SureshKumar, Tata McGraw Hill Publication

Reference Books:

1. Electronic Devices Floyd Pearson Education
2. Electronic Devices & Circuit Theory Boylestad Pearson Education
3. Electronic Design from Concept to Reality Martin Roden Shroff Publication
4. Op Amp and Linear Circuits Ramakant Gaikwad PHI Publication
Term work:

List of Practicals (Minimum eight Practicals from 1 to 11 and Minimum six from 12 to 22.)

List of Practicals for Electronic Circuit Analysis & Design – II

1. Frequency response of two stage RC coupled amplifier.
2. Voltage series feedback amplifier.
3. RC Phase shift oscillator.
4. Wein-Bridge oscillator.
5. Complimentary-Symmetry amplifier.
8. Astable Multivibrator using using transistor
9. Monostable Multivibrator using transistor
10. Astable Multivibrator using IC 555.

List of Practicals for Electronic Software Lab-I

17. V-I characteristics of JFET using ORCAD Capture 9.2.
18. Working with Arithmetic, Exponential, logarithmic, Trigonometric operation in Matlab.
20. Plot of Basic test Signals using plot, stem, fplot, and subplot.
21. Program for Sampling Theorem using Matlab
22. Program for finding Z transform using Matlab.
23. Design of single sided PCB using Eagle Cad.

Note:# Practical and Oral Examination for Electronic Circuit Analysis & Design – II and Electronic Software Lab-I is combined
Course Objectives

1) To understand the need of modulation & types of analog modulation.
2) To understand fundamentals of antennas and wave propagation.
3) To develop knowledge about fundamentals of telephone system.

Course Outcome

1) Students will be able to compare different modulation techniques
2) Students will be able to perform experiment as well as to analyze and interpret data.
3) Students will be able to apply Modern engineering tools (MATLAB) for modulation techniques.
4) Students will be able to identify, formulate & solve communication engineering problems.

SECTION I

Unit 1: Introduction [6 Hrs.]
Importance of Communication, Element of a communication system, Modulation and Demodulation, Need of Modulation, Type of modulation, Type of communication Channels (Transmission line, Parallel wires, Coaxial cables, waveguides and optical fibers), Electromagnetic spectrum, Bandwidth, Concept of multiplexing (TDM,FDM), Application of communication.

Unit 2: Noise [6 Hrs.]
Sources of Noise, Types of Noise, White Noise, Noise calculations, Noise figure, Noise Temperature, Signal to noise ratio.

Unit 3: Amplitude Modulation & Demodulation [12 Hrs.]
Mathematical treatment and expression for AM, Frequency spectrum, Modulation Index, Representation of AM wave, Power relation as applied to Sinusoidal Signals, AM generation Techniques, SSB generation techniques, DSB, ISB and VSB.
AM Demodulation, AM radio receiver types, TRF, Superheterodyne, AM receiver Characteristics, Intermediate frequencies and its choice, AGC.
SECTION II

Unit 4 : Frequency Modulation & Demodulation [9 Hrs.]
Mathematical analysis of FM and PM, Frequency spectrum analysis of FM, Modulation Index, Bandwidth requirements, Narrow Band and wide band FM, Comparison of AM, FM and PM, Direct and indirect methods of FM generation, Need for Pre-emphasis, De-emphasis.
FM detection Techniques - Slope Detector, Dual Slope Detector, Foster Seeley Discriminator, Ratio Detector, Comparison between AM & FM.

Unit 5 : The Telephone System [9 Hrs.]
Introduction, Public switched Telephone Network, The Local Loop, Signals & Noise in the telephone system, Traffic Load and Service Grade, Switching Matrices, Multiple Stage Switching, Two-and Four-Wire connections, Time-Division Multiplexing, TSI (Time Slot Interchanging)

Unit 6 : Antenna And Radio Wave Propagation [6 Hrs.]
Introduction - Characteristics of antennas, Half wave dipole antenna, folded antenna, Yagi Antenna, Horn antenna, Lens antenna.
Wave propagation – Introduction, Ground wave, Sky waves, Space waves.

Text Book:
2. Electronic Communication Systems, Blake, CENGAGE Learning, 2nd Edition

Reference Book:
4. Telecommunication Switching Systems and Networks, Thiagarajan Viswanathan, PHI Learning

Term work:
List of Practicals (Minimum Twelve Practicals)

1. AM Generation Techniques
2. AM Detection Techniques
3. Measurement of Noise Figure
4. FM Generation Techniques
5. FM Detection Techniques
6. SSB Transmission & Reception
7. DSB Transmission & Reception
8. Antenna Characteristics
9. DTMF Encoder Decoder
10. Spectrum Analysis of AM & FM signals
11. TDM/FDM
12. Pre-Emphasis-De-Emphasis
13. Super heterodyne Receiver
14. FM radio receiver
15. Simulation of Analog modulation techniques using MATLAB
16. Simulation of Frequency modulation techniques using MATLAB

Note: The visit to communication industries is compulsory & the Visit report should be submitted in Term Work.
Teaching Scheme: Examination Scheme:
Theory: 3 Hrs/Week Theory: 100 Marks
Practical: 2 Hr/Week Term Work: 25 Marks

Course Objectives

1) To understand concepts of various control systems.
2) To represent control system using block diagram and signal flow graph and obtain transfer function of system.
3) To understand stability of control systems.
4) To understand Time domain analysis of control systems.
5) To obtain Frequency domain analysis of control systems.

Course Outcomes

1) Students will be able to analyze various control systems.
2) Students will be able to obtain transfer function of systems using signal flow graph and block diagram reduction.
3) Students will be able to obtain stability of systems.
4) Students will be able to make time domain analysis of control systems.
5) Students will be able to make frequency domain analysis of control systems.

SECTION I

Unit 1 : Introduction: [4 Hrs.]
Types of control systems, examples of control systems: Liquid level control system, position control system, missile launching and guidance system and automatic aircraft landing system. Transfer function of closed loop system.

Unit 2 : Mathematical modeling of systems : [5 Hrs.]

Unit 3 : System representation and components: [8 Hrs.]
Block diagram representation and reduction techniques, Signal Flow Graph- Construction, Mason’s Gain formula.
Working principle, construction, types and applications of following control system components Stepper motor and Tacho-generator

Unit 4 : Stability analysis: [3 Hrs.]
Concept of stability, absolute and conditional stability, relative stability, Routh – Hurwitz criterion for stability.
SECTION II

Unit 5: Time response of systems: [6 Hrs.]
Standard test signals, time response of first order systems to step, ramp and impulse input. Step response of second order system, time domain specifications, steady state errors and error constants of type0, type1 and type2 systems.

Unit 6: Root locus: [5 Hrs.]

Unit 7: Frequency domain analysis: [6 Hrs.]
Frequency response specifications, co-relation between time domain and frequency domain response, Bode plot: asymptotic bode plot, stability analysis using bode plot.

Unit 8: Compensators: [3 Hrs.]
Need of compensator, types (Lead, Lag & Lead Lag) and their selection

Text Books:
3. Automatic Control Systems B. C. Kuo PHI Publication

Reference Books:
2. Modern Control Engineering K.Ogata Pearson Education

Term work:
List of Practicals (Minimum Ten Practicals)

1) To verify potentiometer as transducer and as error detector.
2) To verify Synchro as transducer.
3) To verify Synchro as error detector.
4) To verify operation of AC position control system.
5) To verify operation of DC position control system.
6) To obtain Effect of type of feedback on control system.
7) To obtain Time response of first order system.
8) To obtain Step response of second order system using R, L and C.
9) To obtain Frequency response of second order system using R, L and C.
10) To verify liquid level control system.
11) To obtain frequency response of Lead Lag compensator.
12) To obtain Root locus using MATLAB.
13) To obtain Bode plot using MATLAB.
14) To obtain time response of second order system using MATLAB.
Teaching Scheme:
Theory: 4 Hrs./Week
Practical: 2 Hrs./Week

Examination Scheme:
Theory: 100 Marks
Term Work: 25 Marks
Practical/Oral Exam: 50 Marks

Course Objective
1. To make students to know the basic characteristic, construction, mathematical models, open loop & close loop operations of Op-Amp.
2. To enable students to analyze AC, DC circuits and find frequency response of Op-Amp.
3. To design & analyze different linear, non-linear & mathematical application circuits using Op-Amp.

Course Outcomes
1. Students will be able to design linear and non-linear Op-Amp circuits for various practical applications.
2. Students would be able to attempt questions on Op-Amp at GATE level exams.

SECTION I
Unit 1: Operational Amplifier Fundamentals [10 Hrs.]
Offset variation w.r.t time, thermal drifts, power supply and universal balancing techniques.

Unit 2: Frequency Response of OP-AMP [4 Hrs.]
Frequency Response of Op-Amp, high frequency equivalent circuit, compensation techniques, Slew rate consideration & its importance.

Unit 3: OP-AMP with negative feedback [4 Hrs.]
Block diagram representation of feedback configurations, Voltage-Series feedback amplifier, Voltage-Shunt feedback amplifier, Virtual ground concept, Differential amplifier.
Unit 4: General linear applications of OP-AMP

[6 Hrs.]

AC amplifiers, Summing, scaling and averaging amplifier (in both mode), Instrumentation Amplifier, V to I and I to V convertors (4 to 20 mA interfacing).
Op-Amp as differentiator and Integrator including study of frequency response.

SECTION II

Unit 5: OP-AMP as Comparators

[5 Hrs.]

Basic comparator, Zero Crossing Detector, Schmitt Trigger, window detector, clippers, clampers, peak detectors, Sample and Hold circuit.

Unit 6: Waveform Generators

[7 Hrs.]

Oscillators- principles etc, Phase shift, Wien Bridge, Quadrature oscillators. Square, Triangular, saw tooth wave generators using Op-Amp. Function generator IC 8038.

Unit 7: Non Linear and special Applications

[8 Hrs.]

Log–antilog amplifiers, Precision rectifiers, Multipliers and dividers. VCO, PLL – IC 565 and its applications.

Unit 8: Active Filters

[4 Hrs.]

Basic filter definitions, Advantages of active filters, First and second order low pass and high pass Butterworth filters.

Text Books:

Reference Books:

2. Design of op-amp and linear circuits – by Franco - TMH - 3rd Edition

Term work:

List of Practicals (Minimum twelve Practicals)

1. Measurement of parameters – Vio, Iio, Ib etc
2. Op-Amp as Inverting and Non-inverting amplifier, Voltage follower.
3. Frequency response of Inverting and Non-inverting amplifiers.
5. Op-Amp as Integrator and Differentiator.
7. Op-Amp as window detector.
8. Op-Amp as peak detector.
9. Op-Amp as waveform generators (Square, triangular, Saw tooth)
10. RC oscillator.
11. Op-Amp as Precision rectifier.
12. Phase Lock Loop 565.
14. V to I convertor with grounded load.
15. Implementation of first & second order low pass Butterworth filter.

Note: Simulate results using simulation software for at least two experiments.
Course Objectives

1) To analyze the types of basic signals and its transformations, systems & its properties.
2) To introduce the sampling theorem, LTI systems and their properties.
3) To represent and realize LTI System by differential and difference Equations.
4) To understand the concept and applications of Fourier Transform and Z transform.

Course Outcomes

1) Students are able to represent different signals and systems mathematically and are able to perform simulation using MATLAB.
2) Students are able to model LTI system.
3) Students can determine system stability using z transform.
4) Students are able to solve questions on signals and systems for various competitive examinations.

SECTION I

Unit 1: Signals and Systems [8 Hrs.]
Introduction to signal and systems, Types of Signals, Elementary Continuous time & discrete time Signals, Transformations of independent Variable, Classification of Signals, Properties of System, Interconnections of systems.

Unit 2: Linear Time-Invariant Systems [4 Hrs.]
Introduction, Properties of Linear Time-Invariant Systems, Block diagram representation of LTI Systems described by Difference & Differential Equations,

Unit 3: Convolution [8 Hrs.]
The Representation of Signals in Terms of Impulses, Convolution Integral, Convolution Sum.

SECTION II

Unit 4: Sampling [4 Hrs.]
Introduction, Representation of a Continuous- Time Signal by Its Samples, The Sampling Theorem, Reconstruction of a signal from its Samples using different methods (Interpolation, Zero order hold, low pass filter), The Effect of Undersampling (Aliasing).
Unit 5 : Fourier Analysis for Continuous-Time Signals and Systems
[8 Hrs.]

Unit 6 : The Z-Transform
[8 Hrs.]

Text Books:
3. Signals and Systems, I. RaviKumar, PHI

Reference Books:
1. Signals and Systems M. J. Roberts [TMH]
2. Signals and Systems by V. Krishnaveni & A. Rajeswari [Wiley India]

Term work:
The term work shall include minimum eight Assignments covering all units.
Teaching Scheme:
Tutorial: 1 Hr./Week
Practical: 2 Hrs./Week

Examination Scheme:
Term-Work: 50 Marks

Course Objectives

1) To develop fundamentals of Simulation Software for simulation of different linear, non-linear Electronics application.
2) To understand the concept of MATLAB software and its signal processing toolbox.
3) To implement PCB design using PCB design Software.

Course Outcomes

1) Student will able to handle electronic circuit design software.
2) Student will able to use the signal processing toolbox for Signal processing applications.
3) Student will able to make their project using PCB design Software.

Unit 1: Simulation of Electronic circuits studied in Electronics circuit Analyses and Design –II by using simulation software such as Orcad Capture 9.2, Proteus, etc.

Unit 2: Introduction to MATLAB, Signal processing Toolbox.

Unit 3: Design of single sided PCB using PCB design Software such as ORCAD.

Text Books:
1. Getting starting with Matlab
2. Mastering Matlab -7
3. Modelling and simulation using MATLAB Simulink
Rudra Pratap, Hanselman- Pearson Education, Dr. Jain Shailendra Wiley India

Websites:
1) http://www.cadence.com
2) http://www.mathworks.com/
3) http://www.linear.com/designtools/software/
4) http://www.kicad-pcb.org
5) http://www.cadsoftusa.com
Term work:

List of Practicals (Minimum six Practicals)

Note:

• # Practical and Oral Examination for Electronic Circuit Analysis & Design – II and Electronic Software Lab-I is combined.
• The list of Practicals for Electronic Software Lab-I is mentioned in Electronics Electronic Circuit Analysis & Design – II syllabus

Prof. V.S. Shirval
Member, BOS, E&TC

Prof. S.M. Mukane
Member, BOS, E&TC

Prof. Dr. S.K. Dixit
Chairman, BOS, E&TC